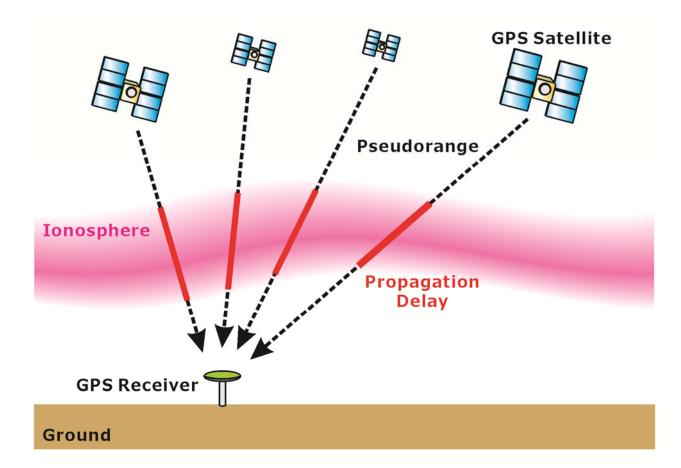
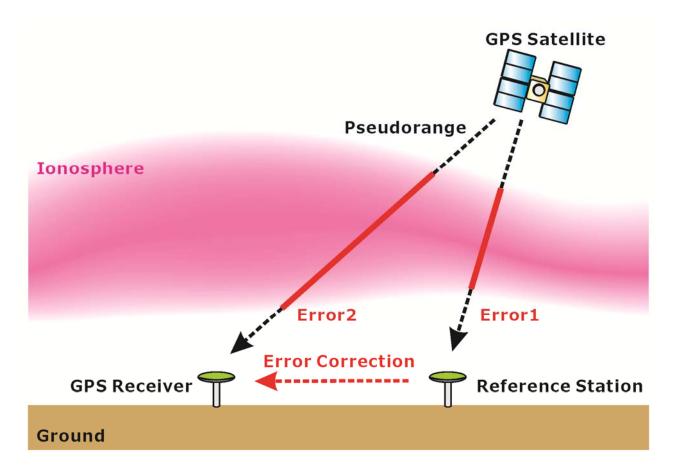

Dense Regional And Worldwide INternational GNSS-TEC observation (DRAWING-TEC) project

T. Tsugawa¹, M. Nishioka¹, S. Saito², A. Saito³, Y. Otsuka⁴, and M. Ishii¹

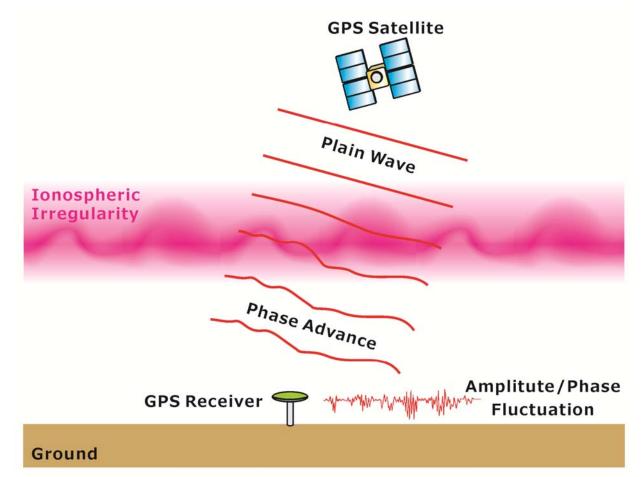

¹ NICT, ² ENRI, ³ Kyoto University, ⁴ Nagoya University

Ionospheric effects on radio applications



GPS navigation and positioning

 Pseudorange includes ionospheric propagation delay which is the largest error of GPS positioning/navigation for general single-frequency GPS receivers.


Differential GPS positioning

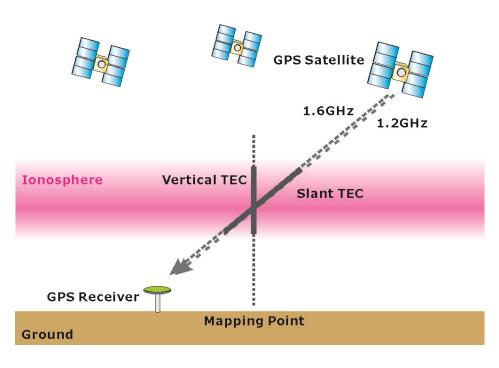
• Steep spatial gradient of ionospheric electron density causes differential GPS positioning errors.

GPS scintillation

• Several 100m scale ionospheric irregularity causes GPS scintillation which results in loss-of-lock on GPS signals in the worst case.

Derivation of TEC using GPS

• Total electron content (TEC) can be derived by comparing the pseudorange/phase delays of the two GPS signals.


$$P_{1} = \rho + I/f_{1}^{2} + \tau_{1}^{r} + \tau_{1}^{s}$$

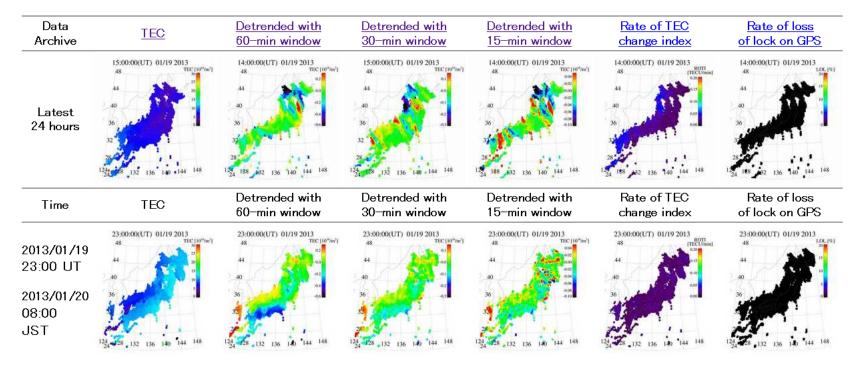
$$P_{2} = \rho + I/f_{2}^{2} + \tau_{2}^{r} + \tau_{2}^{s}$$

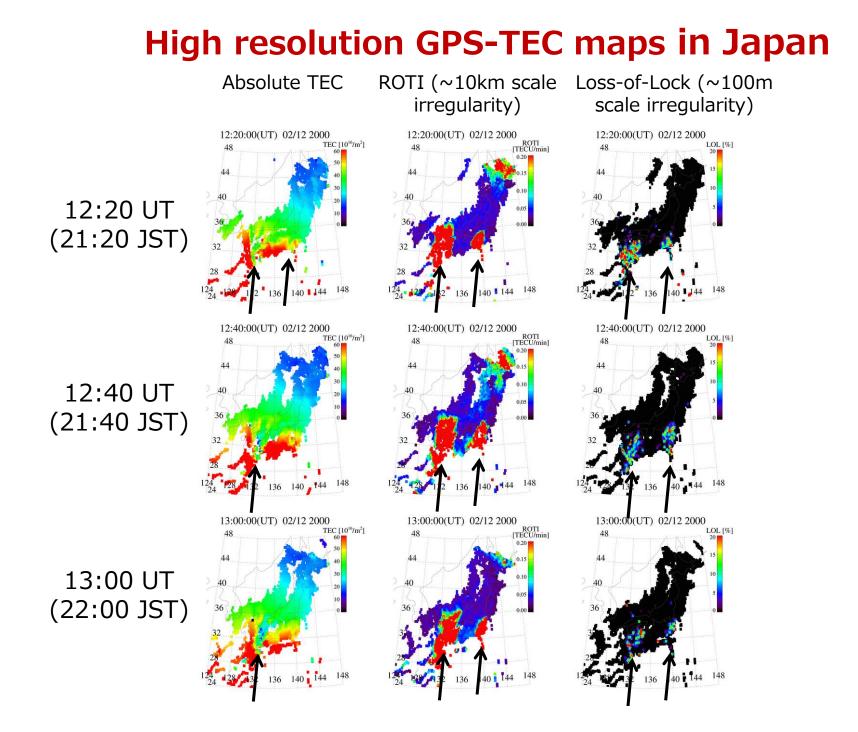
$$L_{1} = \rho - I/f_{1}^{2} + \lambda_{1}n_{1} + \epsilon_{1}^{r} + \epsilon_{1}^{s}$$

$$L_{2} = \rho - I/f_{2}^{2} + \lambda_{2}n_{2} + \epsilon_{2}^{r} + \epsilon_{2}^{s}$$

- $P_1 P_2$: Pseudorange $L_1 L_2$: Carrier phase I: Total electron content f_1, f_2 : Frequency ρ : True range between the GPS satellite and receiver
- TEC is a measure of integrated electron density in 1m² column.
- 1 TECU(=10¹⁶electrons/m²) is frequently used as a measuring unit of TEC.

GPS-TEC maps in Japan

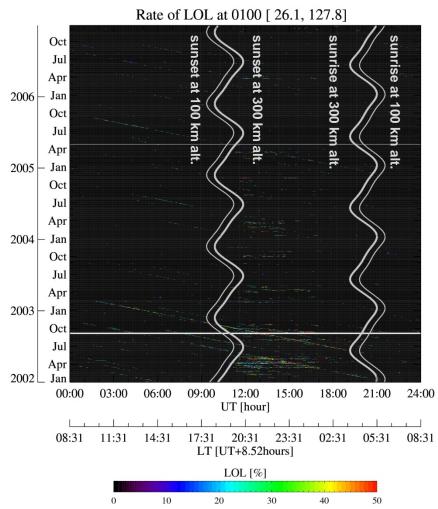

http://seg-web.nict.go.jp/GPS/GEONET


DRAWING-TEC: <u>Home</u> GEONET GPS-TEC maps: Final | <u>Quasi-Realtime</u> | <u>Realtime (β ver.)</u>

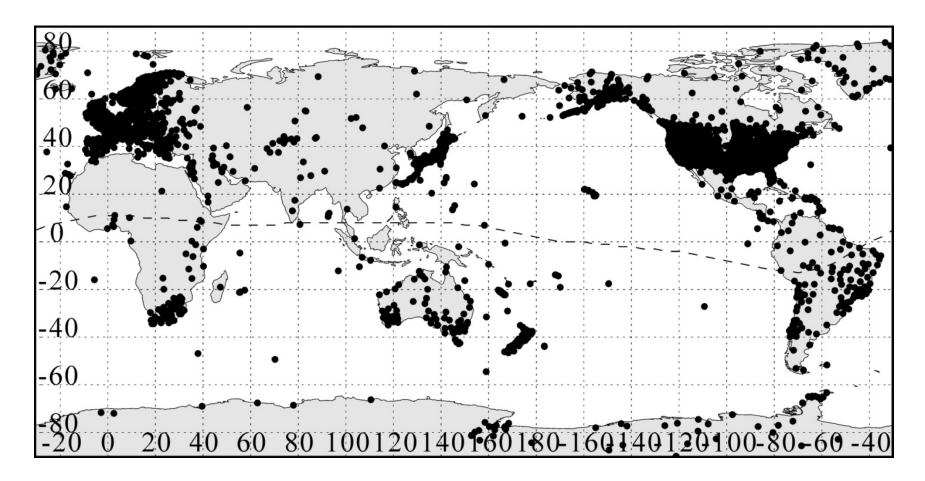
GEONET GPS-TEC maps over Japan (latest 24 hours with 1-hour interval)

Japanese / English

The TEC (total electron content) data for TEC, detrended TEC, and ROTI maps are calculated by NICT under collaboration with Kyoto University and Nagoya University using GEONET GPS data provided by Geospatial Information Authority of Japan. If you have any questions or comments, please e-mail to <u>iono@ml.nict.go.jp</u>.

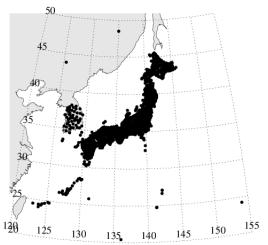


ROTI and LOL at Okinawa, Japan



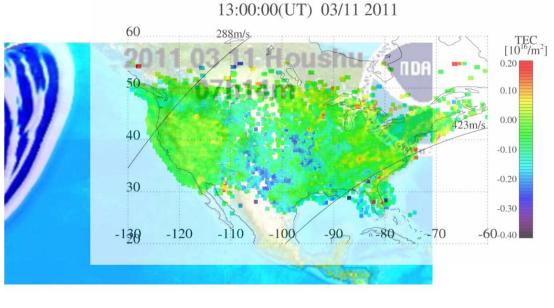
- Slant TEC, ROTI, and Rate of GPS-LOL (5min window) on Apr 30, 2001.
- Sat. zenith angle: < 45 deg.

- Rate of LOL of 2 or more GPS satellites during 2002-2006.
- During Mar-Apr in 2002, the RLOL in the nighttime (21-24 JST) exceeds 30% (once per three days on the average).

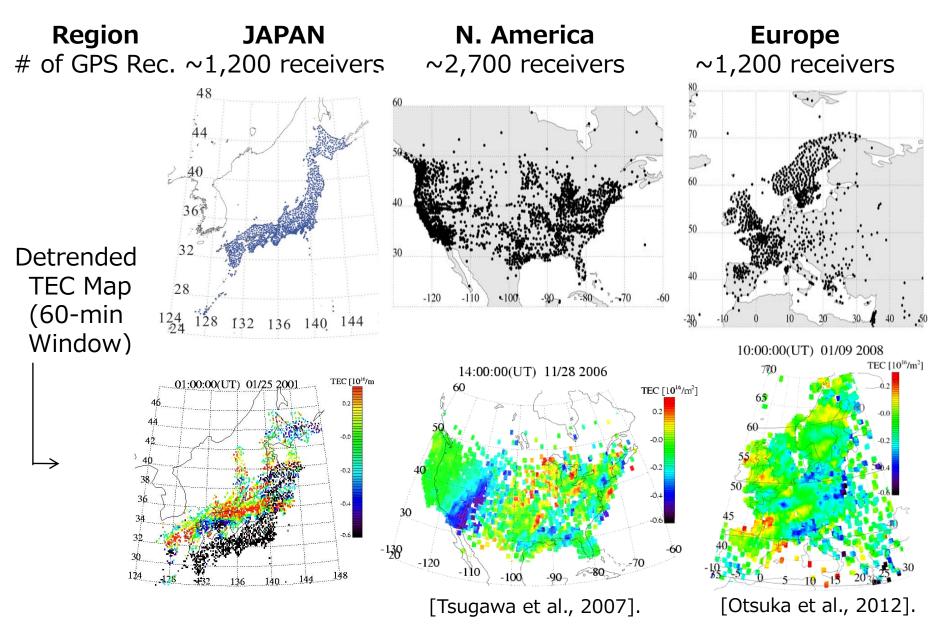

Global GNSS Receiver Networks

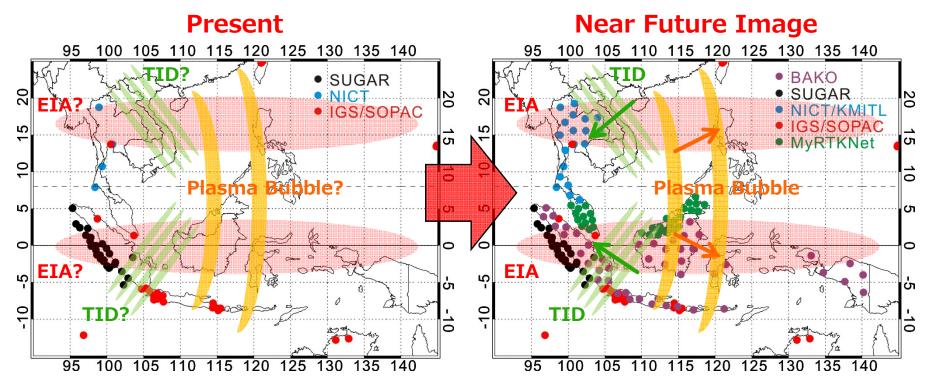
• We have collected all the available GPS receiver data (more than 6,000 receivers as of Jan. 2012) and made the database of TEC.




Earthquake- and Tsunami-induced TEC variations

Japan (GEONET): ~1,200 receivers


Korea (KMA): ~80 receivers (KMA collects Korean GPS receiver data and provides GTEX data)



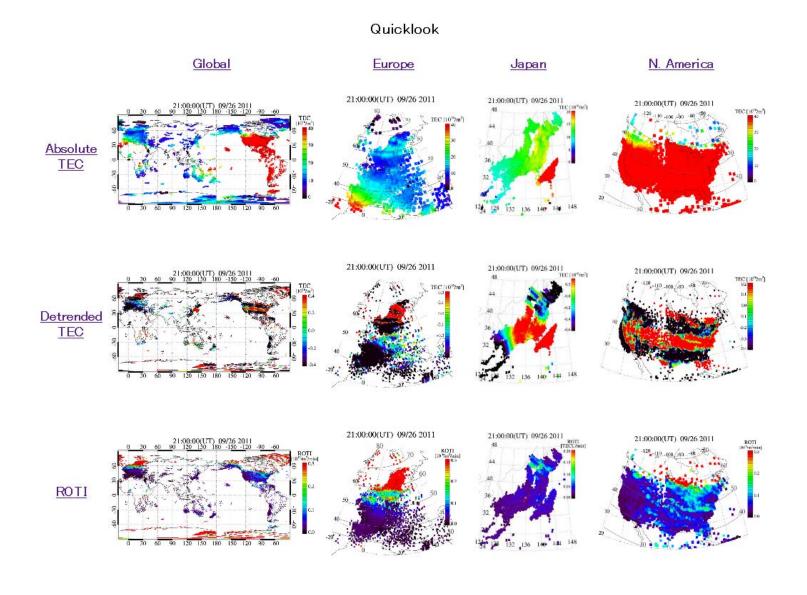
[Tsugawa et al., EPS, 2011].

High resolution GPS-TEC maps

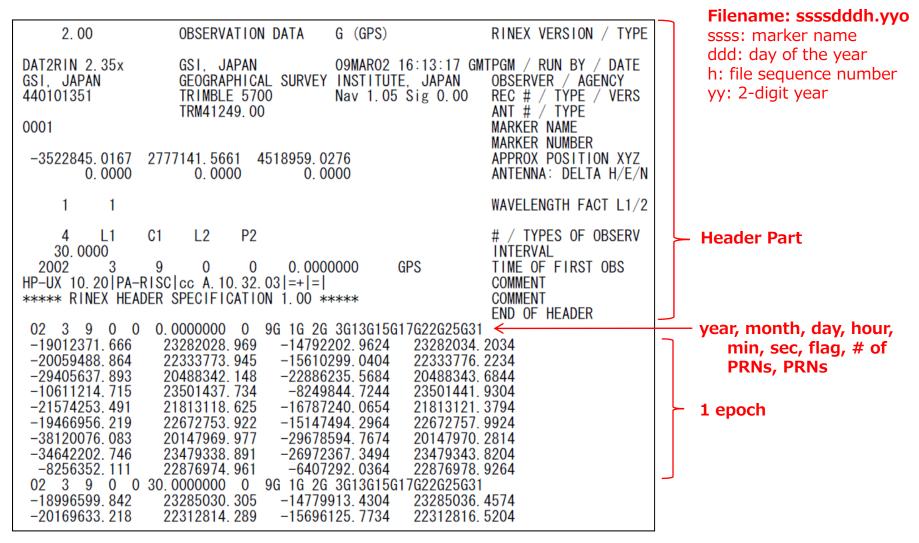
Southeast Asian GNSS Networks Available for Ionospheric Researches

- Dense and wide-coverage GPS receiver network can reveal their spatial structures, propagation directions, and temporal evolutions.
- The GPS-TEC maps greatly contribute to the ionospheric researches and the nowcast/forecast of space weather.
- However, it is difficult to collect or share the GNSS data in some countries due to government or institute data policy.

DRAWING-TEC project

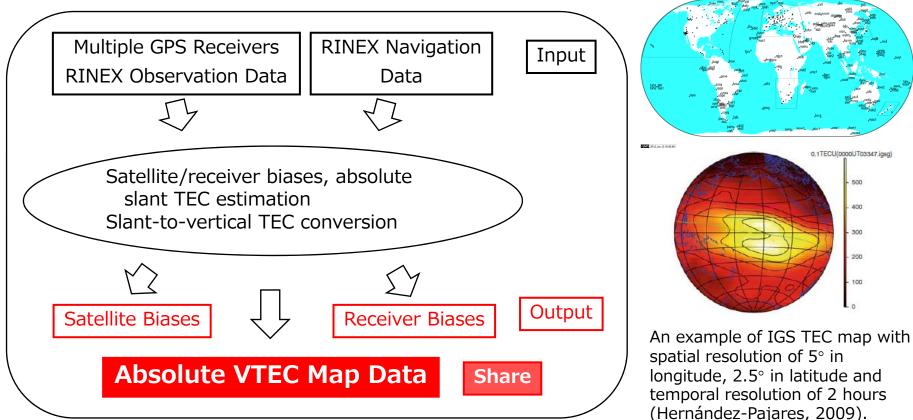

(Dense Regional and Worldwide International GNSS-TEC observation)

- 1. Standardizing GNSS-TEC data for highresolution TEC maps.
- 2. Developing a new high-resolution TEC mapping technique using the standardized TEC data.
- 3. Sharing the standardized TEC data and the data or the information of GNSS receiver network among the international ionosphere and GNSS researcher community.



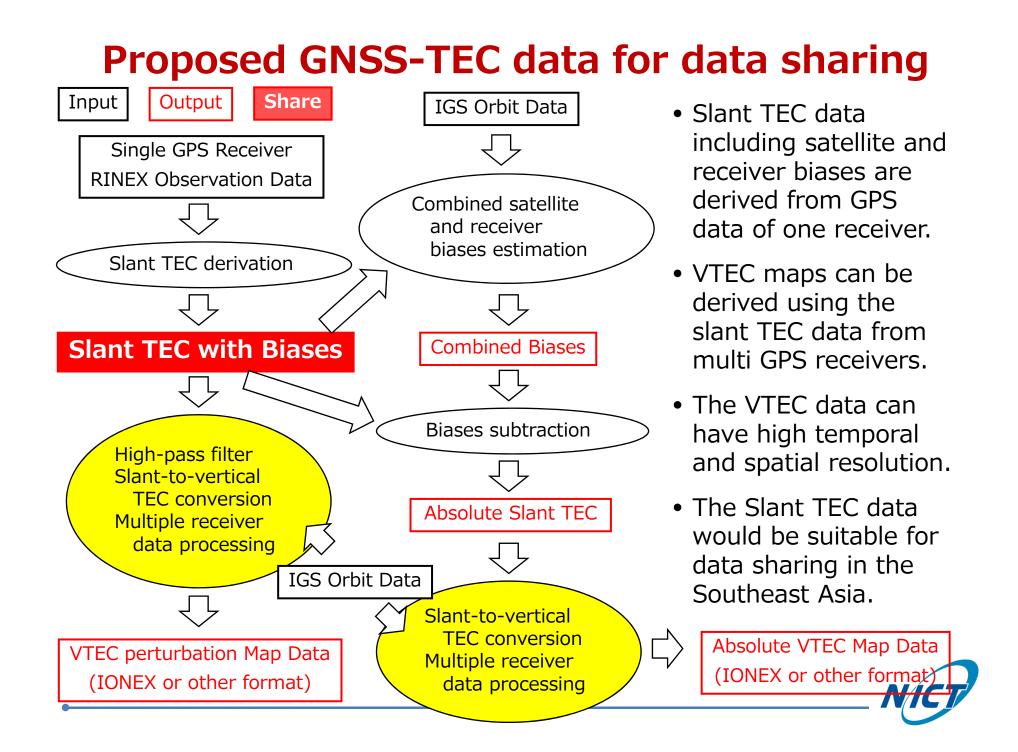
DRAWING-TEC Website

http://seg-web.nict.go.jp/GPS/DRAWING-TEC



GPS Observation Data (RINEX format)

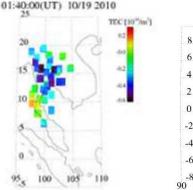
NICT


General GNSS-TEC data (ex. IONEX)

- Vertical absolute TEC (VTEC) map data and instrumental biases of satellite and receiver are simultaneously derived from the data of multiple GPS receivers and satellite orbit.
- Temporal and spatial resolution of VTEC Map data are too low to observe small-scale ionospheric disturbances such as plasma bubble and ionospheric waves.

IONEX format (v1.0)

1.0 IONOSPHERE MAP cmpcmb v1.2 GRL/UWM ionex file containing IGS COMBINED global ionosphere maps for day 257 IONEX file containing the COMBINED IONEX files of the following	25-sep-12 21:16 Ionosphere maps 2012 PGM / RUN BY / DAT COMMENT DESCRIPTION	
2012 9 13 0 0 2012 9 14 0 0 7200 13 COSZ 0.0	0 EPOCH OF FIRST MAP 0 EPOCH OF LAST MAP INTERVAL # OF MAPS IN FILE MAPPING FUNCTION ELEVATION CUTOFF	
combined TEC calculated as weighte 418 32 6371.0 2 450.0 450.0 0.0 87.5 -87.5 -2.5	d mean of input TEC valuesOBSERVABLES USED # OF STATIONS # OF SATELLITES BASE RADIUS MAP DIMENSION HGT1 / HGT2 / DHGT LAT1 / LAT2 / DLAT	
-180.0 180.0 5.0 -1 TEC values in 0.1 tec units; 9999 DCB values in nanoseconds, referen DIFFERENTIAL CODE BIASES G01 -10.719 0.084 G02 6.092 0.058	LON1 / LON2 / DLON EXPONENT if no value available COMMENT	
G 7odm 8.4 G abmf -11.3		
DIFFERENTIAL CODE BIASES	END OF AUX DATA END OF HEADER	
1 2012 9 13 0 0 87. 5–180. 0 180. 0 5. 0 450. 0	0 START OF TEC MAP EPOCH OF CURRENT M LAT/LON1/LON2/DLON	
139 139 139 138 138 138 13 132 132 131 131 130 129 13 130 130 130 131 131 131 131 131 130 130 130 131 131 131 131 131 136 137 137 137 137 137 137 131 139 138 138 139 139 139 13) 130 130 131 130 130 130 130 130 130 1 2 132 133 133 134 134 135 135 136 1 7 137 137 137 137 137 138 138 138 1	33 VTEC values for longitude bins 36 at a latitude bin
85.0-180.0 180.0 5.0 450.0	LAT/LON1/LON2/DLON	I/H

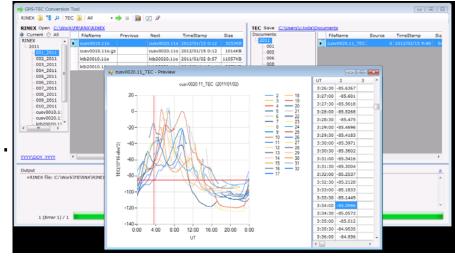


GNSS-TEC exchange (GTEX) format (v1.0)

1.0	GTEX DATA	GNSS	GTEX VERSION / TYPE	Filename: ssssdddh.yy_TEC
RNX2GTEX V1.0	NICT, JAPAN		PGM / RUN BY	ssss: marker name
0			EXPONENT OF TECU	ddd: day of the year
TEC values i	n 10^16 el/m^2 (1	TEC Unit)	COMMENT	· · · ·
TEC Status Flag = 0 : Normal data		COMMENT	h: file sequence number	
	= 1 : Lack of	observables (TEC=999.)	COMMENT	yy: 2-digit year
	= 2 : Too larg	e TEC (TEC=999.)	COMMENT	
			COMMENT	
	= 5 : Cycle sl		COMMENT	
= 6 : Beginning of arc		COMMENT	– Header Part	
TYPES OF DATA = R1 : Raw slant TEC including bias		COMMENT		
	Al : Absolut		COMMENT	
	R1 or A	1 is necessary	COMMENT	
	1F : TEC sta		COMMENT	
	10 : Observa	tion data used for TEC	COMMENT	
	ZN : Satelli	te zenith angle	COMMENT	
	AZ : Satelli	te azimuth angle	COMMENT	
			BIAS ESTIMATION PGM	
01321310.120 013	321320.120 0132133	0.120	RINEX FILE NAME	— RINEX files used to
0132			MARKER NAME	derive slant TEC
00000	TPS NETG3	3.4 EG3 Jul,02,2010) REC # / TYPE / VERS	
	TRM29659.00	GSI	ANT # / TYPE	
	897721.3097 43055	04.4426	APPROX POSITION XYZ	Dec Decition in Let Len Alt
42.7294	141.8640	0.0486	POSITION LAT LON ALT	 Rec. Position in Lat, Lon, Alt Types of obs. in RINEX
		1 \$2	# / TYPES OF OBSERV	— Types of obs. In RINEX
	IF 10 ZN A	Z	# / TYPES OF DATA <	— Types of data product
30.000			INTERVAL C	— Interval according to RINEX
2012 5 1	1 0 0 0	.0000000 GPS	TIME OF FIRST OBS	
			END OF HEADER	
		G 9G18G15G28G 5G27G 8G20	<	— year, month, day, hour,
	2C1P2 32.45 194.			min, sec, flag, # of
-33.4733 0 L1I				PRNs, PRNs
-49.7988 0 L1I				
-55.8391 0 L1I				
-43.6837 0 L1I				∽ 1 epoch
-38.7060 0 L11				
-44.8228 0 L1I				
-31.3004 0 L11				
-48.7904 0 L1I				
12 5 11 0 0 3	30.0000000 0 9G21	G 9G18G15G28G 5G27G 8G20	D	N/ICT/

GNSS-TEC data sharing based on GTEX

- NICT have developed the database of "GTEX" data for more than 6,000 GNSS receivers in the world. These data are available via the NICT science cloud, OneSpaceNet (OSN).
- Since the 1st AOSWA workshop held in Chiang Mai, Thailand in February 2012, we are now developing the GTEX data of Thailand, Indonesia, South Korea, and China collaborated with KMA, KMITL, ^{K. Wattha} (KMITL)] LAPAN, and CMA, respectively.
- We can provide software products to convert RINEX data to GTEX data (Fortran 77), and to make high-resolution TEC grid data (Fortran 77) and map images (IDL).
- NICT recently released a Windows software "RNX2GTEX" which are available via the NICT website.


Detrended TEC over Thailand. [Courtesy of K. Watthanasangmechai / (KMITL)]

Detrended TEC over Indonesia by SUGAR network.

98 100 102 104 106 108 110

94 96

17:50:00(UT) 01/22 2009

Asia-Oceania Space Weather Alliance: AOSWA

http://aoswa.nict.go.jp

- Objective: make a regional linkage of information of space weather for operations and researches
- GTEX data sharing is one of important topics.

The 1st AOSWA workshop at Chiang Mai, Thailand during 22-24 February 2012.

- 10 countries, 30 organizations, 76 participants
- 41 oral presentations, 21 poster presentations, 1 tutorial lecture

The 2nd AOSWA workshop at Kunming, China will be held in 4-7 Nov 2013, hosted by CSERF and CAS.

ICAO Asia and Pacific Ionospheric studies task force (ISTF)

- ICAO plans to use aviation navigations based on GNSS, such as GBAS and SBAS. ICAO recognizes a necessity to evaluate the ionospheric effects on such navigations.
- ICAO Asia and Pacific have discussed about the effect of low-latitude ionospheric disturbances such as plasma bubble since 2009 and established the ionospheric studies task force (ISTF) in July 2011.

- In the 2nd meeting of ISTF held at Bangkok in Oct. 2012, the ionospheric data format for data sharing among countries were discussed.
- The GTEX format proposed by Japan (ENRI, NICT) were adopted as the sharing format in ISTF.
- GTEX format will be fixed by the next meeting (Jul. 2013).

Summary

- High-resolution TEC observations using dense GNSS receiver networks can be a powerful tool to monitor and research medium-scale (~100-1,000 km) ionospheric disturbances such as plasma bubble.
- NICT started "DRAWING-TEC" project to expand the highresolution TEC observation area with collaboration of ionosphere and GNSS researchers in the world (especially in the Asia-Oceania region).
- We hope that the DRAWING-TEC project would contribute to improvements (e.g., higher resolution) in GIM and IRI model .

Acknowledgement

GNSS receiver data or GTEX-TEC data are provided by GSI, UNAVCO, IGS, SOPAC, CORS, WCDA, CHAIN, PANGA, KASI, KMA, EPN, BKGE, OLG, IGNE, DUT, ASI, ITACyL, ESEAS, SWEPOS, SATREF, BIGF, TrigNet, Geoscience Australia, IPS, RBMC, SUGAR, DPT, LAPAN, and KMITL.