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Introductory Comments 
 
The UCAR/CU Cyclone Global Navigation Satellite System (CYGNSS) Soil Moisture 
Product is an L-band bistatic radar dataset that provides estimates of 0-5 cm soil 
moisture at a 6-hour discretization for the majority of the extratropics. CYGNSS is a 
constellation of eight small satellites that was designed to observe ocean surface 
wind speed during hurricanes (PI Chris Ruf, University of Michigan); it is a NASA 
Earth Ventures Mission that was launched in December of 2016. These satellites 
employ a relatively new remote sensing technique called GNSS-Reflectometry 
(GNSS-R), which records L-band signals transmitted by navigation satellites that 
have reflected off of the Earth’s surface and back into space.  
 
Traditional radar remote sensing requires a transmitter; by using existing signals 
from navigation satellites, GNSS-R satellites avoid this requirement. All that is 
needed is a receiver, which significantly reduces the cost of a satellite mission. 
Because of this, several receivers can be launched for a fraction of the cost of 
one traditional remote sensing satellite. The outcome is more data that is 
collected more frequently, albeit with tradeoffs that will be described in his 
handbook. 
 
CYGNSS, in effect, is repurposing the existing GNSS signals—using them for ocean 
surface remote sensing instead of navigation. Here, we repurpose the CYGNSS 
data to estimate soil moisture over land. This product should be used with 
caution—there are many known issues with the current version of the data, and 
the data are not final. Users should keep the following in mind when exploring the 
data: The CYGNSS mission was not designed for soil moisture remote sensing. Data 
are calibrated and recorded assuming that the rough ocean surface is the target. 
Only two people have been wholly responsible for the data provided here: re-
calibration over land, algorithm development, validation, and code generation, 
with a small amount of money generously provided by UCAR. In addition, using 
GNSS-R for remote sensing of the land surface is such a new field that much of the 
theory behind the signal scattering over the land surface is still being understood. 
Our algorithm makes assumptions about the scattered signal that at best are 
simplifications and at worst are incorrect. Keeping this in mind, we hope that users 
will not see these soil moisture retrievals as the best that GNSS-R, or even CYGNSS, 
can provide, but we do hope they will serve as a launching point for learning 
about the true capabilities of this new field. 
 
We would like to acknowledge Dr. Chris Ruf and the rest of the CYGNSS team for 
working hard to provide such high quality GNSS-R to the community. Without their 
efforts of course there would be no soil moisture product. We would also like to 
acknowledge Jan Weiss, Maggie Sleziak, and Michael Rousseau at UCAR for 
helping put the retrievals online. 
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1. GNSS-Reflectometry Background 
 
1.1 Reflection Geometry 
 
Global Navigation Satellite System-Reflectometry (GNSS-R) is a form of bistatic 
radar that utilizes transmitted navigation signals as the signal source. GNSS is an 
umbrella term that encompasses constellations like the United States’ GPS, but 
also the EU’s Galileo, Russia’s GLONASS, China’s BeiDou, India’s IRNSS, and 
Japan’s QZSS. In total, there are over 80 GNSS satellites currently in orbit (32 of 
which are GPS satellites), with more being planned in the coming years. 
 
To date, GNSS-R most commonly utilizes signals transmitted from GPS satellites, 
which are circularly-polarized, L-band microwave signals. Unlike monostatic 
radar, which measures backscatter, GNSS-R measures the forward-scattered 
signal, which has reflected off of the surface of the Earth and back into space. 
Figure 1 presents a schematic of the signal geometry. A satellite in low Earth orbit, 
with a GNSS-R receiver onboard, has one or more downward-looking antennas, 
which record the forward-scattered signals.  
 

 

Figure 1. Schematic of the GNSS-R technique. A GNSS satellite transmits (Tx) a signal towards the 
Earth’s surface. Part of this signal reflects in the forward (specular) direction and back into 

space. A GNSS-R receiver (Rx) onboard a low Earth orbiting satellite, with a downward looking 
antenna, records this signal. The point on the Earth’s surface where the signal reflects depends 

upon the positions of the transmitting and receiving satellites. The roughness of the surface at the 
reflection point determines the spatial resolution of the signal, with rougher surfaces producing 
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larger spatial footprints. Nearly always, the receiver integrates the reflected signal over a period 
of time, which elongates the spatial footprint in the along-track direction. 

1.2 Revisit Time 
 
The point of reflection on the Earth’s surface is determined by the positions of the 
transmitting and receiving satellites. Because these positions are constantly 
changing, the collecting areas are pseudo-randomly distributed on the Earth’s 
surface. This is different than traditional remote sensing techniques, which collect 
data in repeatable swaths. The temporal repeat time of GNSS-R is thus statistical. 
This means that, for a given point of the Earth’s surface, observations could be 
recorded one hour apart, and then there could be no observations for the next 
several hours, for example. Observations are recorded at all times of day, again, 
unlike traditional remote sensing techniques, which tend to design their collection 
strategies to always occur at a particular location at a particular time of day. The 
pseudo-random distribution of observations, over time, aggregate such that 
complete maps of the reflected signal can be made (Figure 2). 
 
1.3 Spatial Resolution 
 
The spatial resolution of the reflecting signal depends on the roughness of the 
surface at and near the reflection point. If the surface is relatively rough, then the 
reflected signal is incoherent and comes from an area called the ‘glistening 
zone,’ which is on the order of several kilometers (~25 km in the case of the ocean 
surface). If the surface is relatively smooth, then the reflected signal is coherent 
and comes from an area defined by the first Fresnel zone. For a low Earth orbiting 
GNSS-R satellite, this area is on the order of ½ a kilometer, though this depends 
slightly (+/- a few hundred meters) on incidence angle. What can be defined as 
a rough versus smooth surface is still a subject of debate. Theoretically at L-band, 
once the surface roughness exceeds a few centimeters, then there should be little 
to no reflected signal coming from the first Fresnel zone. In practical terms, 
however, surface roughness is an extremely difficult parameter to measure, and 
surface roughness will vary considerably on scales as large as the first Fresnel zone. 
In all likelihood, the reflected signal for the coherent case comes from areas within 
the first Fresnel zone that are smooth, and most signals are probably a 
combination of incoherent and coherent scattering. Regardless, some studies are 
beginning to show that a large portion of spaceborne GNSS-R signals collected 
over the land surface have a coherent component, though these studies have 
yet to be published. 
 
Due to the fact that CYGNSS was designed to be an ocean sensor, where the 
reflected signal is relatively weak, the processing software integrates the signal 
over a period of 1 second for each ‘observation.’ During that time, the spacecraft 
has moved approximately 7 km, which means that the smallest along-track 
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spatial resolution possible over land is 7 km, though the across track could still be 
the theoretical 0.5 km. This results in the spatial footprint having a minimum size of 
7 x 0.5 km, with the signal being smeared out along track (Figure 2). Future GNSS-
R missions could be designed such that the integration time is shortened, which 
would decrease the spatial footprint. 
 

 
Figure 2: a. Illustration of the pseudo-random surface sampling by CYGNSS (ellipses with dots). 

Ellipses are approximately 7 x 0.5 km in size, which is the expected footprint if the surface has little 
surface or topographic roughness. Dots are the location of the specular reflection points 

recorded by CYGNSS. b. Over time, observations made by CYGNSS completely cover the land 
surface, producing maps such as this. Here, higher values could indicate a wet surface or a 

relatively flat surface. 
 
1.4 Delay-Doppler Maps 
 
The reflected GNSS signal is recorded by the receiver in the form of what is called 
a delay-Doppler map (DDM). A DDM is created by cross correlating the received 
signal with a locally-generated replica for different path delays (resulting from the 
path distance between the transmitter, reflecting surface, and receiver) and 
Doppler shifts (resulting from the relative motions of the transmitter, reflecting 
surface, and the receiver). Two examples of DDMs are shown in Figure 3. Figure 
3a is an example of a DDM recorded by TDS-1 (a precursor to CYGNSS) over the 
land surface, and Figure 3b is an example of a DDM recorded over the ocean 
surface. The horseshoe shape of the ocean DDM is an indication that the 
reflection is incoherent and comes from a large, rough area. The lack of 
horseshoe in Figure 3a indicates that the reflection is mostly coherent, and comes 
from a smaller, smoother area. The maximum power of each DDM is affected by 
both surface roughness and the dielectric constant of the surface, which is 
explained further in Section 3. Some GNSS-R researchers try to quantify how much 
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‘horseshoe’ is present in the DDM as a proxy for the amount of coherence—we 
do not do this here. 
 
1.5 CYGNSS Observables 
 
DDMs are most commonly used by summarizing them into one metric or 
observable, though in very rare cases, the entire DDM or waveform (one slice of 
the DDM along constant doppler) may be used. The observables that are 
commonly used for soil moisture estimation are the peak cross-correlation of each 
DDM, or the peak divided by the noise floor (signal to noise ratio, SNR). The value 
of the peak cross-correlation of each DDM (called Pr,eff in this document) is related 
to surface characteristics at the specular reflection point of the GNSS signal—
including the roughness of the surface and the surface dielectric constant. 
Information about how DDMs are processed is contained in Section 3.2.1. 
 

 
Figure 3. (a) DDM recorded over a rice field in the Ebro Delta, Spain. (b) DDM recorded over the 

Mediterranean Sea. (c and d) Same as Figures 1a and 1b except that also shown are the 
waveforms at a constant Doppler shift, indicated by the black traces. Note that the z axis scales 
in Figures 1b and 1d are an order of magnitude smaller than those in Figures 1a and 1c. Figure 

reproduced from Chew et al., 2016. 
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2. Soil moisture sensing using GNSS-R 
 
2.1 Previous Work 
 
Historically, the majority of spaceborne GNSS-R studies focused on signals 
reflecting from the ocean surface, either for the purpose of relating ocean 
surface roughness to wind speed, or for altimetric applications. Ground- and 
aircraft-based experiments had shown success in measuring GNSS-R signals over 
land and relating them to changes in near-surface (0-5 cm) soil moisture or 
vegetation water content, but it had generally been assumed that spaceborne 
GNSS-R signals recorded over the land surface would be too weak to be useful 
for these kinds of applications. 
 
After the launch of TechDemoSat-1 (TDS-1) in 2014, observational evidence 
began to mount in favor of developing GNSS-R for land applications. Both Camps 
et al. (2016) and Chew et al. (2016) analyzed data from TDS-1 for sensitivity to soil 
moisture and found spatial and temporal variations in the GNSS reflected signal 
that appeared to be driven by soil moisture. Since then, both TDS-1 and the SMAP 
radar receiver (adapted to record GNSS-R signals) have shown sensitivity to a 
variety of land surface variables including wetland extent (Nghiem et al., 2017) 
and surface freeze/thaw (Chew et al., 2017). Both TDS-1 and SMAP, though 
garnering the largest spaceborne GNSS-R datasets of their time, do not collect 
enough data to provide operational products and are mostly limited to proof-of-
concept investigations. 
 
NASA’s Cyclone GNSS (CYGNSS) constellation, launched in December of 2016, 
however, does provide enough data. Instead of being a single instrument, 
CYGNSS is comprised of eight GNSS-R satellites in low Earth orbit around the 
tropics. This vastly decreases the temporal repeat time. For instance, for the 
latitudinal band ~+/-38 degrees, CYGNSS samples approximately 80% of SMAP’s 
36 km EASE2 grid cells every day, and most of the time CYGNSS will have multiple 
observations for these grid cells. 
 
2.2 Remote Sensing at L-band 
 
Data collected by CYGNSS are sensitive to near-surface soil moisture for the same 
reason that all instruments that collect signals at L-band are sensitive to soil 
moisture. How strongly any signal reflects off of a surface is dependent on the 
dielectric constant of the surface. At L-band, the dielectric constant of the Earth 
is mostly controlled by its moisture content, with wetter surfaces producing 
stronger reflections. There is a secondary dependence on soil texture (i.e. the 
relative amounts of sand, silt, and clay that comprise a soil), though it is small 
compared to the effect from soil moisture. 
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L-band is often quoted as the wavelength of choice when it comes to soil 
moisture remote sensing. Higher frequencies like X- or C-band cannot penetrate 
even minimal vegetation canopies, whereas L-band can. L-band can penetrate 
the soil surface to some extent, and the amount of penetration also depends on 
soil moisture (Njoku and Entekhabi, 1996). In general, the effective penetration 
depth of an L-band signal, and thus of GNSS-R signals, is between 0-5 cm. Longer 
wavelength signals, like P-band, have been studied for their ability to sense 
rootzone soil moisture, though its penetration depth will also depend on moisture 
content, which leads to greater uncertainty in knowing at what depth the 
retrieved soil moisture is actually representing. Restrictions on the transmission of 
this wavelength have also limited its development. 
 
2.3 GNSS-R Sensitivity to Soil Moisture 
 
Since 2015, there have been several studies investigating the sensitivity of GNSS-R 
to soil moisture (Camps et al., 2016; C. Chew et al., 2016; C. Chew, Colliander, et 
al., 2017; C.C. Chew & Small, 2018; Clara C. Chew et al., 2018). Most of these 
studies have been conducted using empirical observations from CYGNSS or 
TechDemoSat-1. Observational evidence clearly shows that GNSS-R is very 
sensitive to surface water from lakes and rivers (Figure 4) even in the presence of 
an overlying vegetation canopy. 
 

 
Figure 4. Observations of Pr,eff over the Amazon basin. 

 
Measuring the sensitivity of GNSS-R/CYGNSS observations to soil moisture, 
however, is more challenging. Spatial variations in both land cover and 
topography, which affect the roughness of the surface, will also affect Pr,eff. This is 
exemplified in Figure 5, which shows a satellite image of northern India along with 
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CYGNSS observations of Pr,eff. Although higher Pr,eff is observed in vegetated areas, 
which should have higher soil moisture than the surrounding arid regions, one can 
also see the influence of mountain ranges and other surface features on Pr,eff. 

 
Figure 5. a. Google Earth image of northern India. b. CYGNSS observations of Pr,eff over the same 
region. The color bar is continuous and is only chunked by 5 dB to highlight the response of Pr,eff 

to different land cover types. 

In order to untangle the response of Pr,eff to both soil moisture and land 
cover/surface roughness, we assume that over time only soil moisture changes 
whereas land cover and surface roughness remain largely static. Of course,  this 
approach ignores changes in vegetation water content. By looking at temporal 
fluctuations in both soil moisture and Pr,eff, we can quantify the sensitivity of Pr,eff to 
soil moisture. Figure 6 shows an example of this kind of analysis in India, where 
changes in SMAP soil moisture are compared to gridded changes in Pr,eff. The 
correlation between the two is strong (r = 0.84). 
 

 
Figure 6. a. Changes in Pr,eff, gridded to 36 km, between May and August, 2017. b. Changes in 

soil moisture from SMAP between May and August, 2017. Adapted from Chew and Small, 2018. 

3. The UCAR/CU Retrieval Algorithm 
 
3.1 Introduction to the Algorithm 
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Our algorithm uses collocated soil moisture retrievals from the Soil Moisture Active 
Passive (SMAP) mission as ‘ground truth’ to calibrate concurrent (same day) 
CYGNSS observations. For a given location, a linear relationship between SMAP 
soil moisture and CYGNSS reflectivity is determined, and the relationship is used to 
transform all CYGNSS observations into soil moisture, even at times when there are 
no SMAP match ups. 
 
Using SMAP data as ‘ground truth’ of course comes with many drawbacks, the 
major one being that SMAP soil moisture retrievals are not actual ground truth 
observations and have their own error and uncertainties. One must be careful 
when using CYGNSS data in areas where it is known that SMAP performs poorly. 
In addition, SMAP’s 40 km spatial resolution is likely coarser than that of CYGNSS, 
though this is still up for debate. Intelligent upscaling of CYGNSS data to the 36 km 
EASE grid that SMAP uses is necessary. If the resolution of CYGNSS is smaller than 
36 km, then we are in effect degrading the CYGNSS data by doing this and not 
using it to its full potential. However, in the absence of mature or validated GNSS-
R scattering models, empirical algorithms must suffice, and SMAP data are 
considered to be the most accurate of the existing soil moisture products. 
 
3.2 Algorithm Description 
 
This section is a step-by-step guide to the soil moisture retrieval algorithm. It 
assumes a working knowledge of the CYGNSS Level 1, version 2.1, netcdf files, all 
of which are available here: https://podaac.jpl.nasa.gov/CYGNSS). In general, 
for every day of the year there will be eight Level 1 files, one for each CYGNSS 
satellite. Each of the eight files contains information pertaining to the thousands 
of reflections recorded on that day. The following steps are applied to each 
reflection in each file. 
 
3.2.1 Processing of delay-Doppler maps (DDMs) 
 
In previous works, we used the signal-to-noise ratio (SNR) as the signal of interest, 
which in the CYGNSS files is contained in the metadata as a variable called 
‘ddm_snr.’ However, as time went on, we realized we were getting better results 
if we instead just pulled the peak value of the analog DDMs (variable name: 
power_analog) themselves and did not worry about the noise floor. We do not 
know why this is the case, possibly the noise floor itself is too noisy, and we do still 
utilize the SNR value itself for quality control. The peak value of the analog DDM is 
found and converted to dB, which we thereafter call Pr. The delay bin at which 
Pr occurs is also found during this step. 
 
3.2.2 Correction of Pr for other effects to derive Pr,eff 
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Pr is not just affected by soil moisture or surface roughness; it is also affected by 
the gain of the receiving antenna, bistatic range, and the transmitted power of 
the GPS satellite. Pr is then corrected for antenna gain, range, and the GPS 
transmit power assuming a coherent reflection: 
 

𝑃"#" =
%&'('

)*(,'-.,-&)0
(&10

)*
Γ"#  (1) 

 
Where: 𝑃"3 is the transmitted RHCP power, 𝐺3 is the gain of the transmitting 
antenna, 𝑅36 is the distance between the transmitter and the specular reflection 
point, 𝑅6" is the distance between the specular reflection point and the receiver, 
𝐺" is the gain of the receiving antenna, 𝜆 is the GPS wavelength (0.19 m), and Γ"# 
is the surface reflectivity. 𝑃"#"  is the Pr as explained above. If you want to do this 
yourself, you’ll need the following variables: ‘sp_rx_gain’ (𝐺"),’rx_to_sp_range’ 
(𝑅6"),’tx_to_sp_range’ (𝑅36), and ’gps_eirp’ (𝑃"3𝐺3). 
 
What we actually want to do is solve for Γ"#, and we do this by converting all terms 
to dB (some of them are already in dB in the CYGNSS files). We tend to call Γ"# (in 
dB) that has been corrected for all of these effects Pr,eff, which stands for effective 
reflectivity.  
 
3.2.3 Land calibration 
 
We make additional empirical calibrations for the GPS transmit power, which we 
have not described in previous papers. While these corrections are sub-optimal, 
it is much better than doing nothing. It is no secret that v2.1 GPS transmit powers 
are rough estimates, and we have found some biases in Pr depending on GPS 
PRN #. However, unlike other researchers, we have not found that removing the 
Block IIF satellites is necessary, so we keep them in to preserve more than a third 
of the total observations. 
 
We currently calibrate the CYGNSS data in part of the Sahara Desert where Pr is 
relatively stable throughout the year, and soil moisture and vegetation changes 
have a negligible effect. In future versions, we will recalibrate over a longer time 
period and use data from dedicated CYGNSS cal/val sites, which at this time are 
still being determined. Figure 7 shows the part of the Sahara where the current 
calibration was completed (limits are indicated by the pins): 
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Figure 7. The region used for calibration is outlined by the yellow pins. 

Figure 8 shows what Pr,eff (labeled as SNR in the plot) looks like for the outlined 
region. Black dots are limits of what we will call sub-cells, which here we chose to 
be approximately 7 km x 7 km . In order to calculate PRN biases, we take the 
mean of Pr observations within each sub-cell and then calculate deviations from 
the mean (Figure 9). Because soil moisture, vegetation, and roughness, should be 
expected to minimally affect Pr for each sub-cell, we assume that deviations from 
the mean are the result of suboptimal PRN corrections (and incidence angle 
variations, described in the next section).  
 

 
Figure 8. Observations of Pr,eff (colored dots). Black dots outline 7 x 7 km sub-cells. 
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Figure 9. (left) Deviations of Pr,eff from the mean for each sub-cell. (right) Histogram of deviations 

of Pr,eff. The standard deviation of the distribution is 1.3557 dB. 

The goal of this exercise was to decrease the standard deviation of the distribution 
as much as possible (Figure 9). It turns out that if you bin this distribution by PRN, 
you see some consistent biases (Figure 10). 
 

 
Figure 10. Distributions of Pr,eff (labeled as SNR) as a function of PRN (unlabeled colored lines). 

 
These biases are removed from Pr,eff as the empirical calibration. It’s likely that 
these biases actually change over time, and in future versions we will update 
these calibrations. Table 1 shows the biases themselves. 
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Table 1. Empirical biases in Pr,eff found according to PRN. 

 
3.2.4 Incidence angle correction 
 
Incidence angle is also expected to affect a coherent reflection, though angle 
only significantly affects the Pr,eff when the angle is above 40 or 50 degrees. We 
modeled how Pr,eff should be affected by incidence angle, for several different 
soil moisture values (Figure 11). If you normalize everything to zero degrees 
incidence, then you find that soil moisture only slightly changes the relationship 
between Pr,eff and incidence angle. (This normalization is also done in Al-Khaldi et 
al., 2019.) We compared the mean, modeled relationship to observations of Pr,eff 
and confirmed the overall drop in Pr,eff as incidence angle increases beyond 40 
degrees. We use the mean, modeled relationship to correct variations in Pr,eff due 
to incidence angle. 
 

 
Figure 11. (left) Modeled relationship for how Pr,eff should vary depending on incidence angle 
and soil moisture. (middle) Same as the left-hand panel, though here modeled Pr,eff has been 

normalized to show that soil moisture does not significantly change the relationship between Pr,eff 
and incidence angle. The blue line is the mean of the normalized relationships. (right) We binned 

observations of Pr,eff over the Sahara in 5 degree increments to confirm that the modeled 
relationship at least loosely resembles what is seen in the observations. 

After calibrating Pr,eff for PRN biases and incidence angle, we see a significant 
decrease in the standard deviation of changes in Pr,eff over the Sahara (Figure 
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12). The standard deviation decreased from 1.3 to 1 dB, which significantly 
improved soil moisture retrievals. 
 

 
Figure 12. Distribution of changes of Pr,eff over the Sahara before (blue) and after (orange) 

calibration and adjustment for incidence angle. 

 
3.2.5 Outlier identification 
 
Standard quality flags are used in the CYGNSS metadata to remove some 
outliers—the specific flags we use are 2, 4, 5, 8, 16, and 17, which in order are: S-
band transmitter powered up, spacecraft attitude error, black body DDM, DDM 
is a test pattern, direct signal in DDM, and low confidence in the GPS EIRP 
estimate. 
 
We perform additional quality control and remove the following: any observations 
with a (pre-corrected) SNR value less than 2 dB, observations with a receiver 
antenna gain less than 0, observations with an incidence angle greater than 65 
degrees, and any data with a Pr coming in at a delay bin outside of 7-10 pixels 
(exclusive). In addition, we have found that results are improved if we impose a 
requirement that (pre-corrected) SNR must be less than or equal to the receiver 
antenna gain + 14. Lastly, we remove observations if the receiver gain is greater 
than 13 but still has a corrected Pr,eff value less than 0. These are empirical 
corrections that are not standardized among other researchers using CYGNSS 
data.  
 
Lastly, any data before ~December 2017 reflecting from a surface elevation 
above 600 m are removed. Because CYGNSS was optimized for ocean surface 
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sensing, the satellites did not record DDMs that contained the full surface 
reflection coming from above about 600 m altitude because they were not 
looking for data from these heights. The CYGNSS team changed the software 
after December, 2017, to include these data. 
 
3.2.6 Removal of data affected by open water 
 
The removal of specular reflection points that are affected by open water is a 
critical step before retrieving soil moisture. Even small water bodies ~25 m wide 
can significantly affect Pr,eff, which then means that these Pr,eff observations will 
not be affected by soil moisture as strongly (Figure 13). We have probably tried a 
dozen different ways to mask open water, and none of them are perfect because 
no currently available water mask is perfect. Thus far, we have found the best 
success using the Pekel et al. (2016) dataset (https://global-surface-
water.appspot.com), which is a 30 m, optically-derived water mask. Because it is 
derived from optical data, it underestimates the amount of water beneath 
vegetation. 
 

 
Figure 13. The correlation between CYGNSS observations and SMAP soil moisture for part of the 
United States (colored pixels). The Pekel et al. (2016) dataset for this region is also shown—the 
area is dominated by large reservoirs and smaller lakes. The correlation between SMAP and 

CYGNSS is low when observations fall on or near water bodies, which is expected. For reference, 
large black outlined boxes are the 36 km EASE-2 grid used by SMAP which normally contain high 

quality SMAP soil moisture observations. 

The current algorithm removes open water using the ‘seasonality’ data product 
provided by Pekel. This product represents how many months out of a year a pixel 
is inundated (0-12). For our purposes, we make this product binary by considering 
any value greater than 1 to be flagged as water, and anything below this to be 
non-water. We do this because sometimes the permanent water bodies are 
seasonally covered by vegetation, which makes the Pekel dataset represent 
them as less than 12 (permanent). 
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For each specular reflection point, we find the amount of water within a 7 x 7 km 
region surrounding the point. This is a simplification of the actual footprint, but it is 
computationally more efficient than rotating axes to form actual ellipses, which 
themselves are simplifications and not well quantified. If the amount of water in 
the 7 x 7 km region exceeds 1%, we remove that CYGNSS observation from 
consideration. Changing these thresholds or region sizes changes the results, 
though never uniformly increasing or decreasing error across regions. 
 
3.2.7 Transforming Pr,eff into soil moisture 
 
Here, we will describe how Pr,eff is transformed into soil moisture, using SMAP soil 
moisture retrievals to calibrate CYGNSS observations. Our calibration period was 
chosen to be March 17, 2017 – October 1, 2018. 
 
Our algorithm is very simple: it assumes that Pr,eff is linearly-related to SMAP soil 
moisture. This relationship is expected to vary spatially, though in its current form 
we assume that it does not change over time (future versions will allow for these 
changes). For a given location, we calculated the slope of the best-fit linear 
regression between SMAP soil moisture and CYGNSS Pr,eff, after having removed 
the mean of each for the entire time series. Before we can describe this in more 
detail, however, we have to understand what ‘a given location’ means in this 
context. 
 
We already described that we assume that Pr,eff has a finer spatial resolution than 
SMAP’s 40 km resolution. We have found that we get best results when we grid 
our Pr,eff observations to ~3 x 3 km ‘subcells’ and then aggregate the gridded 
observations to the 36 km SMAP EASE-2 grid resolution (Figure 14). Why subcells? 
If we were to aggregate all observations of Pr,eff in one 36 km grid cell and look at 
how Pr,eff varied within that grid cell, we would see variations in Pr,eff due to factors 
like land cover type and topography. By dividing up the grid cell into smaller 
subcells, we see more consistent relationships between Pr,eff and soil moisture. The 
subcells effectively help to remove the confounding effects of land cover and 
topography on Pr,eff. The number of points per subcell in the calibration period are 
shown in Figure 15—subcells with less than 3 observations were not used for 
calibration. 
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Figure 14. Depiction of how observations of Pr,eff are gridded into subcells within a 36 km SMAP 

cell. 

 
Figure 15. The number of CYGNSS observations for each sub-cell that were used for calibration. 
Fewer observations are found in higher elevation areas, which only have ‘good’ data for about 
½ the time series, relative to the lower elevation areas. Observations over open water have 

already been removed. 

 
Within each subcell, we calculated the linear regression between SMAP soil 
moisture and Pr,eff match-ups (occurring on the same day), after having removed 
the mean from both SMAP and Pr,eff in that cell (correlation coefficients for this 
relationship are shown in Figure 16). The mean values of both SMAP and CYGNSS 
during the calibration period serve as our reference values, in order to return an 
absolute value of soil moisture from CYGNSS. In our algorithm, the reference value 
is the mean soil moisture for the entire calibration period. We call the slope of the 
best fit line 𝛽, which is conceptualized in Figure 17. 
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Figure 16. The correlation coefficient between SMAP soil moisture and CYGNSS reflectivity 

observations. Open water points have been removed. It is ‘easier’ to get a higher correlation 
coefficient when there is significant soil moisture variability throughout the year. 

 

 
Figure 17. The slope of the best-fit line between SMAP soil moisture and Pr,eff (labeled as 
Reflectivity) match ups is called 𝛽  and is used to calculate soil moisture from CYGNSS. 

𝛽 is used to estimate soil moisture from CYGNSS for data falling outside the 
calibration period as well as data within the calibration period when there are no 
SMAP match-ups (since SMAP has a 2-3 day overpass period): 
 

𝑆𝑜𝑖𝑙	𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒DE(FGG = 	𝛽	 × Δ𝑃",KLL + 𝑆𝑜𝚤𝑙	𝑚𝑜𝚤𝑠𝑡𝑢𝑟𝑒GOP%QQQQQQQQQQQQQQQQQQQQQQQQ 
 
𝛽 varies spatially (Figure 18). Unfortunately, sometimes it looks like 𝛽 is influenced 
by noise in regions where soil moisture shows little or no variability throughout the 
year. We are looking into parameter regionalization to minimize these effects. 
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Figure 18. The slope of the linear regression between CYGNSS reflectivity observations and SMAP 

soil moisture (𝛽). This represents the sensitivity of CYGNSS to soil moisture, with lower values 
indicating a higher sensitivity—though low values are also found in regions where soil moisture 
does not tend to vary. Higher values of 𝛽 mean that CYGNSS is not as affected by increases or 
decreases in soil moisture. Be careful in interpreting this, as imperfect open water masking will 

cause an apparent insensitivity to soil moisture. 

We then combine the subcell soil moisture retrievals by taking the average for a 
selected time period (either every 6 hours or every day) to upscale them to the 
EASE-2 36 km resolution. We are currently investigating whether or not the ~3 km 
retrievals are valid on their own—if so, we will release them in a future version. 
 
3.2.8 Daily and sub-daily retrievals 
 
We currently provide soil moisture retrievals on daily and sub-daily (6 hourly) time 
steps. For the daily retrievals, we average all observations within a particular grid 
cell that fall within the 24-hour time period. For the sub-daily retrievals, we average 
all observations for a particular grid cell in 6-hour intervals, which are currently 
midnight – 6 am, 6 am – noon, noon – 6 pm, and 6 pm – midnight (UTC).  
 
3.2.9 Quality control 
Currently, quality control is minimal—we remove soil moisture retrievals that 
indicate soil moisture being less than 0.01 or greater than 0.65 cm3 cm-3. 
 
3.2.10 Soil moisture retrieval uncertainty 
 
Figure 19 shows the unbiased root mean square difference (ubRMSD) between 
CYGNSS and SMAP soil moisture retrievals for the calibration period (March 18, 
2017 – October 1, 2018). Semi-transparent regions are those frequently flagged 
by SMAP as being poor quality. Note that we tend to get higher ubRMSD in areas 
that flood seasonally. 
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Figure 19. Unbiased root mean square difference between SMAP and CYGNSS soil moisture 

retrievals. Regions where SMAP always flags the data as being ‘poor quality’ are semi-
transparent, such as the Amazon, central Africa, Indonesia, Japan, southeast Asia, and the 

majority of the eastern United States. In these regions, you should be careful when using either 
SMAP or CYGNSS soil moisture data. Higher ubRMSD in regions with ‘good quality’ SMAP data 
tend to be found in regions that are seasonally flooded or near coastlines. It is possible that in 

these areas, the seasonal water influence on CYGNSS reflectivity may overwhelm the soil 
moisture signal. Or, it is also possible that the soil moisture signal in SMAP data is a red herring, 

and the brightness temperatures are actually responding to the increase in flooded area instead 
of soil moisture. Answering this question will be the subject of future research. 

 
3.3 Thoughts on gridding 
 
The gridding scheme described in Section 3.2.7 that utilize ~3.3 km subcells in 
which to aggregate the CYGNSS data will come as a surprise to some—the 
majority of researchers analyzing CYGNSS data aggregate the observations to a 
much larger grid size (say, 25 km). However, we have found that we get the best 
results when we grid to a much smaller grid size and then upscale the retrievals 
afterwards. 
 
The following represents a small, and possibly inappropriate, attempt to show why 
we believe the CYGNSS data respond to land surface characteristics on these 
scales. We wanted to find an area where we could quantify how much ‘blurring’ 
of the CYGNSS signal there is as the soil transitions from dry to wet. These examples 
are actually not that easy to find (we were trying to avoid looking at transitions 
between water/dry land), and we settled on looking at the transition between 
desert and agricultural land in the Punjab region of Pakistan (Figure 20).  
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Figure 20. (left) GlobCover2009 landcover map of the transitional region between desert and 

cropland in Punjab, Pakistan. (right) CYGNSS observations for the same region. The black line is 
our delineation between bare/croplands, which we gleaned from the landcover map. 

As a reminder, we currently think of the spatial footprint of CYGNSS to be an 
elongated ellipse, as shown in Figure 2a. One might think that, if the patch of land 
surface contained within this ellipse were completely dry, that Pr,eff would be low, 
and that if the patch of land were wet, that Pr,eff would be high. If the ellipse were 
centered on the transition between wet and dry, such that half the ellipse was 
wet, and half was dry, that the resulting value of Pr,eff would be in between the 
low and high values (Figure 21). The transition distance between high and low 
values of Pr,eff as it moves across the landscape could be thought of as the blurring 
of an image. 
 
Figure 21 also shows larger example footprints with diameters of 36 km. In the case 
of the yellow footprints, the western-most one does not overlap with the cropland, 
and the resulting signal will not be contaminated from the cropland. In the case 
of the blue footprints, the western-most one still overlaps with the cropland, so in 
this case we would expect to see a higher signal than if we also had data from 
the western-most yellow footprint. In this case, we would expect the blue 
footprints to show more blurring than the yellow ones. 
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Figure 21. Simplified footprints to illustrate how a remote sensing image will appear more or less 
blurred depending on footprint size. Yellow footprints are approximately 7 x 0.5 km in size, which 

is the smallest theoretical footprint for CYGNSS, given its current integration time of 1 second. 
Blue footprints have a diameter of approximately 36 km. 

We attempted to quantify the ‘blurriness’ of both CYGNSS Pr,eff observations and 
ungridded, Level 1, SMAP brightness temperature observations across this 
transition zone (Figure 20) by identifying the delineation between desert and 
croplands using the GlobCover 2009 land cover map (300 m resolution). Our 
fundamental goal in this exercise was to quantify how ‘long’(distance-wise) it took 
for Pr,eff and brightness temperature observations to transition from their mean 
values over the desert to their mean values over the croplands. The easiest way 
to do this was to grid the CYGNSS and SMAP observations to the 300 m GlobCover 
2009 resolution and then quantify how many grid cells it took for CYGNSS and 
SMAP to transition across the entire region shown in Figure 20. Of course, the 
transition line is not directly oriented N-S, so we had to reference all pixels with 
respect to the line in order to collapse the dependence on latitude (Figure 22). 
 

 
Figure 22. (left) A depiction of how the Punjab was gridded and referenced to the transition line 
between desert and cropland. (right) Colored lines are gridded Pr,eff, with each line representing 

one 300 m strip of grid cells, going N-S. The black line is the mean. The transition area is the 
distance it takes for Pr,eff to change from its mean value over the desert to its mean value over 

croplands. 
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We then quantified the transition distance as being the distance that it took for 
Pr,eff to increase from its mean value over the desert, to its mean value over 
croplands (Figure 23). We found this distance to be 8.65 km, which is only slightly 
larger than the theoretical smallest along-track resolution of 7 km. 
 
We repeated this exercise for the Level 1 SMAP V-pol brightness temperatures and 
found the transition distance to be approximately 38 km, which is pretty close to 
its actual resolution of 40 km; however, these could all be coincidences and need 
to be analyzed further before any blanket statements can be made. 
 

 
Figure 23. The transition distances across the Punjab for CYGNSS (left) and SMAP (right). 

 
Finally, we have tested various gridding schemes on the CYGNSS data, and we 
find that both ubRMSD and the correlation between SMAP soil moisture and 
CYGNSS decrease and increase, respectively, when smaller grid sizes are used 
(Figure 24). 
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Figure 24. This figure uses a region in Oklahoma to exemplify the effect of the different sub-cell 
grid sizes on resulting CYGNSS soil moisture retrievals. Longitude and latitude were erroneously 
not labeled in these figures. (top row) The unbiased root mean square difference (cm3 cm-3) 
between SMAP and CYGNSS soil moisture retrievals when different sub-cell sizes are used—

ubRMSD decreases when the sub-cell size decreases. (middle row) The r2 value between SMAP 
soil moisture and Pr,eff when different sub-cell sizes are used—r2 increases when sub-cell size 

decreases. (bottom row) Distributions of ubRMSD (cm3 cm-3) and r2 for the region shown in the 
top two rows. 

4. In situ validation 
 
We are currently validating the CYGNSS soil moisture retrievals against in situ 
observations, for the time period March 17, 2017 – March 1, 2019. The networks we 
have chosen for validation are the following: COSMOS, PBOH2O, SCAN, SNOTEL, 
and USCRN, though not all networks have data for the entire validation time 
period. Although other networks exist (like iRON, and SOILSCAPE), we found there 
to be little to no data that were useful for validation. We also removed some 
stations from our chosen validation networks that had long periods of non-sensical 
soil moisture data. In total, we used 203 different sites for validation.  
 
In the figures and tables that follow, we show example CYGNSS soil moisture time 
series and the unbiased root mean square error (ubRMSE) between CYGNSS and 
in situ soil moisture, as well as the ubRMSE between SMAP and in situ soil moisture 
for context. In general, SMAP and CYGNSS showed similar ubRMSEs, which one 
would expect, given that CYGNSS was calibrated from SMAP. CYGNSS sneaked 
away with a slightly lower ubRMSE overall (Table 2). Of course, ubRMSE is not a 
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perfect descriptor of how well SMAP or CYGNSS reproduce in situ time series, but 
it is the most commonly used one. 
 
Keep in mind that stations within these networks often contain only in situ data for 
a particular point, and that point may not be representative of the 36 km regional 
soil moisture. For example, many stations are located near water bodies or in 
agricultural fields. Stations near the ocean are particularly bad, since the SMAP 
data near coastlines are generally not at all representative of the coastal soil 
moisture. Given that the in situ observations used for validation by SMAP are not 
available to the public, we had to make do with these. 
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Figure 25. Example time series from various in situ validation networks (blue line) with CYGNSS soil 

moisture retrievals (black dots). 

 
Table 2. Unbiased root mean square error between CYGNSS soil moisture/in situ and SMAP soil 

moisture/in situ, for all 203 stations and divided by network. 
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Figure 26. Maps showing the unbiased root mean square error between CYGNSS soil moisture 

and in situ observations around the world. 

 
Table 3. In situ soil moisture sites used for validation and the unbiased root mean square errors 

between CYGNSS and in situ/ SMAP and in situ. Also shown are the number of observations used 
for validation—many in situ sites did not have data for the full time period used for validation 

(March 17, 2017 – March 1, 2019). Table spans 3 pages. Bias, slope, r values, etc. can be 
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provided upon request. Tan cells are those where CYGNSS had a smaller ubRMSE than SMAP, 
though in general they were very similar. 
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5. Plans for future versions 
 
We hope to keep improving our product: a more robust calibration of the signal 
over land is a priority. We are considering releasing the 3 km soil moisture retrievals 
themselves, if there is sufficient interest. We would also like to explore ‘smart 
gridding’ of the data that allows for a more flexible mesh based on land cover 
type or topography, to remove imposing arbitrary grid lines on the landscape. In 
the future, we will also explore parameter regionalization to increase the 
accuracy of CYGNSS soil moisture retrievals near coastlines, where SMAP has 
trouble retrieving soil moisture due to its larger footprint. 
 
6. File overview and loading the data 
 

Spatial coverage: N: 38, S: -38 
E: 164, W: -135 Data format: netCDF4 

Spatial resolution: 36 km x 36 km Platform: CYGNSS 

Temporal coverage: 18 March 2017 to 
present Sensor: CYGNSS GNSS-R 

receivers 

Temporal resolution: 6 hours Version: V1.0 

Data contributors: Chew, C.C., E. E. 
Small   

 
File naming convention: ucar_cu_cygnss_sm_v1_YYYY_DDD.nc  
YYYY: 4 digit year 
DDD: 3 digit day of year 
 
Each netCDF file contains the following variables: 
latitude: Refers to the latitude of the center of the grid cell. Dimensions: 252 x 802 
longitude: Refers to the longitude of the center of the grid cell. Dimensions: 252 x 
802 
timeintervals: The start and stop time for the subdaily soil moisture retrievals. For 
example, the first row is (0,6), which means that the first of the reported subdaily 
soil moisture retrievals were recorded between midnight and 6 am. Dimensions: 4 
x 2 
SM_daily: The average soil moisture for each grid cell recorded during the full 24 
hr period. Dimensions: 252 x 802 
SM_subdaily: The average soil moisture for each grid cell recorded during each 
specified time interval. Dimensions: 252 x 802 x 4 
SIGMA_daily: The standard deviation of soil moisture observations for each grid 
cell for the full 24 hr period. Dimensions: 252 x 802 
SIGMA_subdaily: The standard deviation of soil moisture observations for each 
grid cell during each time interval. Dimensions: 252 x 802 x 4 
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7. Quality flags—important 
 
In order to keep file size to a minimum, we provide quality flags in a separate file 
(BoulderCYGSM_static_flags.nc). Just because they are in a separate file does not 
mean you can ignore them, though. As we’ve tried to emphasize throughout this 
handbook, the retrievals we’ve provided is only version 1 and has known 
problems. 
 
To encourage the use of the quality flags, we’ve provided them in simple grids. 
We don’t mean to say that you shouldn’t use data that are flagged, but you 
should use them with caution and not be surprised if retrievals aren’t what you 
would expect. 
 
Quality flag meanings and how we derived them. For all flags, a value of 1 = true, 
a value of 0 = false: 
latitude: Refers to the latitude of the center of the grid cell. Dimensions: 252 x 802 
longitude: Refers to the longitude of the center of the grid cell. Dimensions: 252 x 
802 
flag_poor_SMAP: Indicates that CYGNSS was calibrated to SMAP data where a 
large portion (>90%) of the SMAP soil moisture retrievals were flagged as ‘not 
recommended for retrieval.’ Dimensions: 252 x 802 
flag_small_SM_range: Indicates that CYGNSS was calibrated to SMAP data with 
a small range of soil moisture values (< 0.1 cm3 cm-3), which means the uncertainty 
in 𝛽 is large. Dimensions: 252 x 802 
flag_high_ubrmsd: Indicates a high unbiased root mean square difference 
between CYGNSS and SMAP retrievals (> 0.08 cm3 cm-3). Dimensions: 252 x 802 
flag_few_obs: Indicates a small number of observations in the grid cell for 
calibration, leading to a less certain 𝛽 (n < 100). Dimensions: 252 x 802 
flag_low_signal: Indicates low mean Pr,eff after water point removal in the cell, 
which likely means that roughness or vegetation effects are dominate (mean Pr,eff 

< 5 dB). Dimensions: 252 x 802 


